Close this search box.

From mice to yeast: new network to use model organisms to study rare disease



What do a mouse, a fly, a zebrafish, a worm and yeast have in common? Together these five organisms hold the keys for scientists to better understand the basic molecular function of genes and specific gene mutations. The Canadian Institutes of Health Research (CIHR), in partnership with Genome Canada, has awarded the Canadian Rare Diseases Models and Mechanisms (RDMM) Network — a first of its kind collaboration —$2.3 million to investigate these molecular mechanisms and advance rare disease research.

Rare diseases are usually not the focus of research laboratories, which greatly limits our ability to discover effective therapies. We can gain insight into most rare human diseases by analyzing the equivalent genes and pathways in experimental organisms, because nature uses the same building blocks to construct organisms such as yeast, worms, flies, fish, mice and humans. This approach will underpin the RDMM Network, which is led by Drs. Phil Hieter, Kym Boycott and Janet Rossant.

“Our efforts will build on Canada’s proven leadership in rare disease gene discovery through national engagement,” said Hieter, senior scientist at the University of British Columbia. “We will mobilize the entire Canadian biomedical community of clinicians and model organism researchers to communicate and connect, integrate and share their resources and expertise, and work together to provide functional insights into newly discovered rare disease genes.”

The RDMM Network includes all basic science researchers studying gene function in model systems and clinician scientists discovering novel disease genes in Canada. It will study biological mechanisms underlying rare diseases at the levels of genes, pathways and networks by analyzing the equivalent (orthologous) genes in the five model organisms.

“The key to success will be increased collaboration between clinicians and scientists as early as possible following the discovery of new gene mutations that cause disease,” said Boycott, senior scientist at the Children’s Hospital of Eastern Ontario (CHEO) and associate professor in the University of Ottawa Faculty of Medicine. “Our goal is to better understand new aspects of human biology and disease and identify therapeutic pathways that might lead to the development of new treatments for rare disease patients.”

The RDMM Network, through its scientific advisory committee, will fund at least 24 catalyst projects annually. Its goals are to validate genetic variants that cause disease, advance understanding of disease mechanisms, create the rationale for treatment (e.g., identification of candidate drug targets) and establish longer-term collaborations between scientists and clinicians that will lead to subsequent funding of outstanding laboratory and/or applied research.

“Together, with our partners at Genome Canada, the Canadian Institutes of Health Research is proud to support the RDMM network, to advance efforts in rare disease research,” said Dr. Paul Lasko, scientific director of the CIHR Institute of Genetics. “Their work will guide the development and improvement of treatments and therapeutics for the more than 350 million people worldwide who suffer from a rare disease.”

In addition to co-leaders Hieter, Boycott and Rossant (The Hospital for Sick Children, University of Toronto), the RDMM Network includes a number of co-applicants from the clinical genetics and model organism communities. Funding is provided by CIHR and Genome Canada.

About CIHR

The Canadian Institutes of Health Research (CIHR) is the Government of Canada’s health research investment agency. CIHR’s mission is to create new scientific knowledge and to enable its translation into improved health, more effective health services and products, and a strengthened health care system for Canadians. Composed of 13 institutes, CIHR provides leadership and support to more than 13,200 health researchers and trainees across Canada.

About Genome Canada

Genome Canada is a not-for-profit organization that acts as a catalyst for developing and applying genomics and genomic-based technologies, to create economic and social benefits for Canadians. Genome Canada connects ideas and people across the public and private sectors to find new uses for genomics, invests in large-scale science and technology to fuel innovation, and translates discoveries into applications, new technologies, societal impacts and solutions across key sectors of national importance, including health, agriculture, forestry, fisheries & aquaculture, energy, mining, and the environment.

About the CHEO Research Institute

The CHEO Research Institute coordinates the research activities of the Children’s Hospital of Eastern Ontario (CHEO) and is affiliated with the University of Ottawa. Its three programs of research include molecular biomedicine, health information technology, and evidence to practice research. Key themes include cancer, diabetes, obesity, mental health, emergency medicine, musculoskeletal health, electronic health information and privacy, and genetics of rare disease. The CHEO Research Institute makes discoveries today for healthier kids tomorrow.

Visit the SickKids website to learn more about its research .

Visit the University of British Columbia website to learn more about its research.

Quick facts

Media contact