Home / Development of an Omics-Driven Beer Yeast Performance Database to Support the Ontario Craft Brewing Industry
Development of an Omics-Driven Beer Yeast Performance Database to Support the Ontario Craft Brewing Industry
Generating solutions
Status
Competition
Genome Centre(s)
GE3LS
Project Leader(s)
- George van der Merwe,
- University of Guelph
Fiscal Year Project Launched
Project Description
The beer sector contributes $13.6 billion to the Canadian GDP and has an economic impact of more than 3 times that of wine and spirits combined. The contribution of craft beer to the beer sector is growing and is predicted to triple by 2027. Nonetheless, craft beer competes with many imported beers. This, along with the ever-increasing demand for product diversity from consumers drives the industry to increase production efficiency and be innovative in the production process to decrease production costs and increase product quality. With this application we propose to provide craft brewers in Ontario with information that will drive production efficiency and product consistency, thereby limiting losses and increasing profitability. The yeasts used in craft beer production are at the heart of the beer. Yeast diversity is one of the main tools used by brewers to create product diversity. Brewers tend to use standard production parameters, such as fermentation temperature and yeast nutrient management strategies, to generate beers with specific flavour profiles. A lack of understanding the optimal production parameters often leads to inconsistencies in beer quality and thus financial losses. In the three years allocated to this project we will determine the genetic composition of 40 commonly used and novel beer yeast strains to gain insight into its capacity to completed fermentations efficiently and to produce certain flavour compounds. We will also determine the optimal fermentation temperature and yeast nutrient needs for each of these strains and correlate the production procedures with specific flavour compounds produced by each strain. Towards the end of the project and in the subsequent two years the generated information will be compiled and integrated into a novel, publicly accessible Beer Yeast Performance Database for brewers to consult when designing brewing strategies. Rather than relying on generic production parameters, this information will allow brewers to approach more consistent brewing with predictable outcomes for individual yeast strains. We anticipate this resource, which will be maintained and updated as new information becomes available, will provide valuable information that will drive both innovation and consistency in beer production, thereby increasing profitability. It will help build a robust Ontario craft brewing sector that can compete effectively in the beer market.